that the γ-phosphate of ATP is positioned within the vicinity of the active site cysteine. ${ }^{12}$

The high $K_{i}(17.7 \mathrm{mM})$ for 1 is somewhat surprising, especially since even the simple dipeptide Arg-Arg exhibits a K_{i} of 3.8 mM as a reversible inhibitor of the A-kinase. ${ }^{13}$ It occurred to us that the disulfide-containing peptide might be obliged to bind in a less than optimal fashion in order to modify the active site cysteine residue. ${ }^{14}$ This notion is consistent with our observation that the K_{i} obtained for peptide 1 from inactivation kinetics (17.7 mM) is larger than that acquired from competitive inhibition kinetics $(970 \pm 26 \mu \mathrm{M}){ }^{15}$ The latter value is reasonable for peptides of this size. ${ }^{13.16}$ These results suggest that more potent inhibitors may be accessible via positional isomers of Leu-Arg-Arg$\mathrm{Cys} \Leftrightarrow \mathrm{Cys}$-Leu-Gly. These experiments are currently in progress.

One possiblc pathway for inactivation is depicted in Scheme I. Theoretical studies have predicted that the peptide bond within a Cys \Leftrightarrow Cys dyad should occupy the cis configuration. ${ }^{17,18}$ We note that for peptide bonds in general, the trans arrangement is the preferred structure. In species $\mathbf{2},{ }^{19}$ the peptide bond is now free to isomerize to the trans isomer 3. The release of the strain inherent in a $\mathrm{Cys} \Leftrightarrow$ Cys dyad may very well explain why disulfide exchange back to the unmodified A-kinase and Leu-Arg-ArgCys \leftrightarrows Cys-Leu-Gly is not observed.

In summary, we have described the inhibitory activity of a disulfide-containing peptide. This prototype of a potentially valuable class of affinity labels contains several attractive features. First, the preparation of the intramolecular disulfide bond is straightforward since oxidation is readily accomplished in aqueous solution. Second. the synthesis of this class of affinity labels does not require modification of a peptide by some external reagent. Therefore, even extremely long peptides, containing the natural array of nucleophilic side chains, can be converted into reagents that will covalently modify the appropriate target enzyme. Third, this class of affinity labels contains only functional groups that are present in proteins. Consequently, this suggests that it may be possible to construct protein-based affinity labels via site-directed mutagenesis. We note that modification is most likely specific for sulfhydryl groups. The active site cysteine-199 in the A-kinase is conserved in other protein kinases as well, including other members of the cyclic nucleotide-dependent subfamily (e.g. cGMP dependent). the calcium/phospholipid-dependent subfamily (i.e. protein kinase C), and the calcium/calmodulin-dependent subfamily (e.g. human HeLa cell serine kinase). ${ }^{20}$ In addition, other enzymes that act upon protein substrates, such as cathepsin B (a cysteine proteinase), ${ }^{21}$ cyclophilin (a peptidyl-prolyl-cis-trans
(12) Jimenez, J. S.; Kupfer, A.; Gani, V.; Shalliel, S. Biochemisiry 1982, 2l, 1623.
(13) Feramisco, J. R.; Krebs. E. G. J. Biol. Chem. 1978, 253, 8968.
(14) Plapp, B. V. Methods Enzymol. 1982, 87, 469.
(15) Covalent modification of the enzyme is precluded under the assay conditions employed to assess the K_{i} of 1 via compelitive inhibition kinetics (i.e. in the presence of MgATP): Assays conlained 100 mM MOPS, $150 \mu \mathrm{M}$ [$\gamma{ }^{32}$ P]ATP ($200 \mathrm{cpm} / \mathrm{pmol}$), $12.5 \mathrm{mM} \mathrm{MgCl} 2,150 \mathrm{mM} \mathrm{KCl}, 0.125 \mathrm{mg} / \mathrm{mL}$ BSA, kemptide ($10-40 \mu \mathrm{M}$), and peptide $1(0-1200 \mu \mathrm{M})$ in a tolal volume of $80 \mu \mathrm{~L}$ al pH 7.1 and $30^{\circ} \mathrm{C}$. Kinase reactions were initiated by addition of the A -kinase to a final concentration of 5 nM . Reactions were terminated as described in ref 8 .
(16) It should be possible to enhance the affinity of this peptide for the enzyme-active site by addition of appropriate amino acids on the N -lerminus. See: Glass. D. B.: Cheng, G.-H.; Mende-Mueller, L.; Reed. J.; Walsh, D. A. J. Biol. Chem. 1989. 264. 8802.
(17) Chandrasekaran, R.; Balasubramanian, R. Biochem. Biophys. Res Commun. 1968, 188, 1.
(18) We have recently delermined that compound 1 exists as both the cis and Irans isomers in solution (based on NOESY NMR experiments, Sukumaran, D. K.; Prorok, M.; Lawrence, D. S., manuscripl submilled for publication). The Irans isomer constitutes a sizable percentage (35%) of the total cis/Irans population. Consequently, it appears likely that this species also contributes to the inaclivation of the A-kinase.
(19) Compound 2 is the result of only one of two possible modes of nucleophilic altack. Experiments are in progress to determine the relative ratios of the two polential products.
(20) (a) Hanks, S. K. Proc. Nail. Acad. Sci. U.S.A. 1987, 84, 388. (b) Hanks, S. K.; Quinn, A. M.; Hunter, T. Science 1988, 24l, 42.
(21) Rich, D. H. In Proteinase Inhibilors; Barrell, A. J., Salvesen, Eds.; Elsevier: New York, 1986; p 153.
isomerase), ${ }^{22}$ and Factor XIIIa (a transglutaminase), ${ }^{23}$ appear to be potential targets as well.

Acknowledgment. We are pleased to acknowledge the American Cancer Society (No. BC-664) for generous financial support. We also thank Professor Shahriar Mobashery for helpful advice.

Supplementary Material Available: A Lineweaver-Burk plot of 1 as a competitive inhibitor versus [kemptide] and a replot of the slopes of the reciprocal plot versus [1] (2 pages). Ordering information is given on any current masthead page.
(22) Although the active site cysteine in cyclophilin does nol appear to be essential for catalysis, modification of this residue does result in the elimination of enzymatic aclivily. See: (a) Fisher, G.; Willman-Liebold, B.; Lang, K.: Kiefhaber, T.; Schmid, F. X. Nalure 1989, 337, 476. (b) Harrison, R. K.: Siein, R. L. Biochemistry 1990, 29, 1684. (c) Liu, J.; Albers, M. W.; Chen, C.-M.; Schreiber, S. L.; Walsh, C. T. Proc. Nall. Acad. Sci. U.S.A. 1990, 87, 2304.
(23) Folk, J. E. Adv. Enzymol. 1983, 54, 1.

Synthesis and X-ray Crystal Structure of a Highly Strained Anti-Bredt Olefin/Anti-Bredt Lactam. exo-2-Carbomethoxy-1-aza-8-oxobicyclo[3.3.1]non-4ene

K. J. Shea, * Timothy G. Lease, and Joseph W. Ziller

Department of Chemistry
University of California, Irvine Irvine, California 92717
Received July 30. 1990
Bridgehead double bonds experience topologic constraints that can result in nonplanar olefin geometries. ${ }^{1}$ Such distortions can also profoundly influence chemical reactivity. These anti-Bredt olefins may be isolated only when the trans double bond is contained in a ring of eight or more atoms. We report the synthesis and X-ray crystal structure of exo-2-carbomethoxy-1-aza-8-oxobicyclo[3.3.1]non-4-ene (1), a molecule that contains both a bridgehead olefin and a bridgehead amide in an eight-membered ring. This is the first X-ray structure of a bridgehead olefin containing a trans-cyclooctene ring, ${ }^{2}$ and it represents one of the most highly strained isolable anti-Bredt molecules prepared to date.

Anti-Bredt olefin 1 was prepared by a type 2 intramolecular Diels-Alder cycloaddition. ${ }^{3}$ Condensation of diene a mide 2 with methyl glyoxalate followed by acetylation of the resulting methylol according to the procedure of Weinreb ${ }^{4}$ afforded diene acetate 3, the Diels-Alder precursor (Scheme I). In situ thermolytic elimination of acetic acid generated the N-acylimine intermediate 4, which cyclized to give 1. The cycloadduct was produced in optimum yield (35\%) by heating dilute solutions of $3(0.01 \mathrm{M}$,

[^0]

Figure 1. ORTEP plot of 1 at the 50% probability level.
Scheme I

xylenes) to $250^{\circ} \mathrm{C}$ for 2.5 min . The crude pyrolysis mixture could be chromatographed under N_{2} allowing isolation of the colorless, crystalline cycloadduct.

The anti-Bredt olefin is a highly reactive compound and efforts to manipulate it in air resulted in formation of epoxide 5. Handling the cycloadduct in a nitrogen drybox permitted recrystallization by the vapor diffusion method: slow diffusion of hexane into a benzene solution of 1 at $-30^{\circ} \mathrm{C}$ resulted in formation of monoclinic crystals suitable for X-ray crystallography. ${ }^{5}$

An ORTEP plot of bridgehead alkene 1 is shown in Figure 1. The cycloadduct contains the bridgehead olefin and bridgehead amide in a trans,trans-1,5 relationship in an eight-membered ring. The structural data, therefore, permit an evaluation of the response of each functional group to the strain of occupying the bridgehead position of the bicyclo[3.3.1]nonane framework.

The X-ray data reveal the bridgehead olefin and bridgehead amide are significantly distorted from planarity. The extent of the distortions can be quantified by the torsion angle τ between the p-orbitals of the olefin and amide π systems and by the py-
(5) X-ray diffraction data for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$: The crystal belongs to the monoclinic system with unit cell paramelers at 183 K : $a=8.4717$ (16) A, $b=6.5737(10) \AA, c=17.496$ (3) $\AA, \beta=94.195(15)^{\circ}$, and $V=971.7$ (3) \AA^{3}. The space group is $P 2_{1} / n$ wilh $Z=4$ formula units/unil cell and D (calc) $=1.33 \mathrm{Mg} / \mathrm{m}^{3}$. Intensity data (2023 total) were collected on a Siemens R3m/V diffractometer system with monochromalized Mo K α radiation ($\bar{\lambda}$ $=0.710730 \AA$) by a $\theta-2 \theta$ scan lechnique. Sa All 1647 reflections with $\left|F_{\mathrm{o}}\right|>$ 0 were considered observed. The siruclure was solved by direct meihods and refined by full-malrix leas1-squares lechniques. ${ }^{\text {sb,c }}$ Hydrogen atoms were located from a difference-Fourier map and included with isolropic lemperalure paramelers. Al convergence, $R_{\mathrm{F}}=4.1 \%, R_{\mathrm{wF}}=4.9 \%$, and GOF $=1.71$ for 180 variables. A final difference-Fourier map was fealureless. Pyramidalization and iorsion angles were calculated with use of the OR FFE program. (a) Churchill, M. R.; Lashewycz, R. A.; Rolella, F. J. Inorg. Chem. 1977, 16, 265-271. (b) UCLA Crystallographic Compuling Package, University of California, Los Angeles, 1981, C. Strouse, personal communication. (c) SHELXTL PLUS Program sel: Siemens Analytical X-Ray Insırumenıs, Inc.; Madison, WI, 1989. (d) Busing, W. R.; Martin, K. O.; Levy, H. A. OR FFE: A Fortran Crystallographic Function and Error Program; Oak Ridge Nalional Laboralory, U.S. Alomic Energy Commission: Oak Ridge, TN, 1964; ORNL-TM-306.

Figure 2. ORTEP plois (al 20% probability for clarity) of the olefin and a mide bonds (and their respective substituents) in 1 with all other atoms omitted: (a) olefin viewed along the axis of the $\mathrm{C}=\mathrm{C}$ bond with C_{4} in front and (b) the side view; (c) a mide viewed along the axis of the $\mathrm{C}-\mathrm{N}$ bond with C_{8} in front and (d) the side view.
ramidalization angles χ of the constituent atoms of the two functional groups. ${ }^{6}$ At the $\mathrm{C}-\mathrm{C}$ double bond the torsion angle $\tau_{\mathrm{C} 4-\mathrm{C} 5}$ is $10.8(5)^{\circ}$. The pyramidalization angle of the bridgehead carbon $\chi_{C 5}$ is $39.0(2)^{\circ}$ whereas $\chi_{\mathbf{C} 4}$ is $17.9(11)^{\circ}$. The torsion and pyramidalizations of the double bond are readily discerned from Figure 2 (parts a and b). The $\mathrm{C}=\mathrm{C}$ bond distance, 1.333 (2) \AA, is within error of the value for cyclohexene, 1.335 (3) $\AA{ }^{\circ}{ }^{7}$ and is much smaller than the distance of $1.543 \AA$ for a single bond at the same (boat cyclohexane) position in a bicyclo[3.3.1]nonane derivative. ${ }^{8}$ Since it is indistinguishable from that of a normal olefin, the bond distance is not a sensitive function of the distortions.

A soft bending potential at nitrogen and a weak torsion potential about the $\mathrm{C}-\mathrm{N}$ bond result in a more extensive distortion of the bridgehead amide. ${ }^{9}$ Pyramidalization at the bridgehead nitrogen is essentially complete: $\chi_{\mathrm{N}_{1}}=54.9(\mathrm{I})^{\circ}$. The carbonyl carbon, however, undergoes almost no pyramidalization: $\chi_{\mathrm{C8}}=1.4(2)^{\circ}$. The torsion angle $\tau_{\mathrm{N} 1-\mathrm{C} 8}$ is $16.7(1)^{\circ}$ (Figure 2, parts c and d). The distortion of the amide linkage results in a lengthening of the amide $\mathrm{C}-\mathrm{N}$ bond to 1.399 (2) \AA, compared to 1.333 (2) \AA for 4-tert-butylvalerolactam; ${ }^{10}$ the $\mathrm{C}-\mathrm{N}$ bond distance in piperidine is 1.472 (11) $\AA .^{11} \quad$ Thus the amide $\mathrm{C}-\mathrm{N}$ bond distance in 1 is halfway between a $\mathrm{C}-\mathrm{N}$ single bond and a normal $\mathrm{C}-\mathrm{N}$ amide bond.

The distortions in 1 result in a significant modification of the chemistry of both the olefin and amide linkages. A report of this behavior and structural studies of related compounds will be given in the full account of this work.

Acknowledgment. We thank the National Science Foundation for financial support of this work. Funds for the purchase of the Siemens R3m/V diffractometer system were made available from the National Science Foundation under Grant CHE-85-14495. We also thank Professor William Evans for his assistance with the recrystallization procedure and Professor Robert Doedens for
(6) Winkler, F. K.; Dunitz, J. D. J. Mol. Biol. 1971, 59, 169-182. For a distorted double bond \mathbf{A} the pyramidalization angle χ_{B} is found by defining

$$
\begin{aligned}
& w_{-A_{A}^{A}-x} \\
& y_{-B_{-}}
\end{aligned}
$$

the plane ZBA and measuring its acule angle to the plane YBA. Note that for a planar $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ double bond $\chi \approx 0^{\circ}$; for a fully pyramidalized (sp^{3}) atom $\chi \approx 60^{\circ}$. The p-orbital torsion angle τ_{A-B} is the average of the four-atom torsion angles $\Phi_{\text {WABY }}$ and $\Phi_{\text {XABZ }}$. When there is no π-orbital misalignment $\tau=0^{\circ}$
(7) Delermined by electron diffraction: Chiang, J. F.; Bauer, S. H. J. Am. Chem. Soc. 1969, 91, 1898-1901.
(8) Delermined by X-ray cryslallography: Tamura, C.; Sim, G. A. J Chem. Soc, B 1968, 1241.
(9) For a review of bridgehead laclams see: Greenburg, A. In Siructure and Reactivily; Liebman, J. F., Greenburg, A., Eds.; VCH: New York, 1988; Chapler 4.
(10) Delermined by X-ray cryslallography: van der Helm. D.; Eksirand, J. D. Acta Crysıallog. 1979, B35, $3101-3103$.
(11) Delermined by electron diffraction: Gundersen, G.; Rankin, D. W. H. Acla Chem. Scand., Ser. A 1983, A37, 865-874.
his assistance with the torsion angle calculations.
Supplementary Material Available: Description of the X-ray diffraction experiment and tables of experimental data, atomic coordinates, thermal parameters, interatomic distances, and bond angles (5 pages); listing of structure factor amplitudes (6 pages). Ordering information is given on any current masthead page.

The 2-Pyridone Dimer, a Model Cis Peptide. Gas-Phase Structure from High-Resolution Laser Spectroscopy

Andrew Heid and David W. Pratt*

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260

Received July 27, 1990
Revised Manuscript Received September 24, 1990
One of the criteria for the formation of a satisfactory polypeptide configuration is that each carbonyl and imino group be involved in the formation of a hydrogen bond with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ distance approximately $2.8 \AA$ and with the oxygen atom nearly on the $\mathrm{N}-\mathrm{H}$ axis. ${ }^{1}$ This requirement is met by many proteins, including those containing the rare cis amide linkage. ${ }^{2}$ Linkages of this type also are exploited widely in molecular recognition. ${ }^{3}$ In this report, we show that at least one precursor to such structures also exists in the gas phase, that it is planar or nearly so, and that its ground-state geometry is very similar to that determined by X-ray crystallography.

The model cis peptide is the 2 -pyridone dimer I, formed in the

gas phase by expansion of a supersonic jet seeded with 2 hydroxypyridine ($2-\mathrm{HP}$). Figure 1 A shows a portion of the S_{1} $\leftarrow \mathrm{S}_{0}$ fluorescence excitation spectrum (FES) of the resulting gas-phase mixture, probed $\sim 15 \mathrm{~mm}$ downstream of the nozzle with a tunable pulsed dye laser operating in the ultraviolet. There are three prominent bands in this spectrum at a resolution of ~ 1 cm^{-1}. The two lower frequency bands, at 29831 and $29930 \mathrm{~cm}^{-1}$, are the electronic origins of two conformers of the 2-pyridone monomer (2-PY, the lactam form of 2-HP), differing in the degree of nonplanarity at the nitrogen atom. ${ }^{4,5}$ The higher frequency band, displaced $945 \mathrm{~cm}^{-1}$ to the blue of the first monomer origin, belongs to the 2-PY dimer, (2-PY) ${ }_{2}$.

Proof that this high-frequency band is that of (2-PY) $)_{2}$ was provided by examining it at higher resolution, sufficiently high to expose the underlying rotational structure of the band so that the inertial parameters of the molecule (in both its S_{0} and S_{1} states) could be measured. A molecular beam CW laser spectrometer ${ }^{6}$ was employed for this purpose. Figure 1, spectra B and C, shows the rotationally resolved FES of the high-frequency band. The

[^1]

Figure 1. (A) A portion of the vibrationally resolved fluorescence excitation spectrum (FES) of 2-hydroxypyridine ($2-\mathrm{HP}$) in a supersonic jel. The healed sample of $2-\mathrm{HP}\left(\mathrm{al} \sim 120^{\circ} \mathrm{C}\right.$) was seeded in 5 alm of He , expanded through a 2 mm diameter pulsed nozzle, and probed 15 mm downsiream by a frequency-doubled pulsed dye laser. The two sirong lower frequency bands are the $S_{1} \leftarrow S_{0}$ origins of the $2-\mathrm{HP}$ lautomer 2-pyridone (2-PY); the strong high-frequency band is a $S_{1} \leftarrow S_{0}$ vibronic transition of the model cis peptide, 2 -pyridone dimer [($2-\mathrm{PY})_{2}$]. (B) The rotationally resolved FES of the $(2-\mathrm{PY})_{2} \mathrm{~S}_{1} \leftarrow \mathrm{~S}_{0}$ vibronic band, recorded in the collision-free environment of a molecular beam. In this case, $2-\mathrm{HP}$ was heated $10 \sim 200^{\circ} \mathrm{C}$, seeded in 300 Torr of Ar, expanded through a $240-\mu \mathrm{m}$ quariz nozzle, skimmed iwice, and probed 100 cm downsiream by a iunable CW laser operating in the UV. The resulting FES, delecled with a photon counter, was calibrated with use of a mode-matched confocal interferometer and the 1_{2} absorption spectrum. All data were processed and analyzed with a Concurrent computer system and specially designed software. (C) A portion of spectrum B illusirating the resolved rotational lines of (2-PY) $\mathbf{2}_{2}$. In specira A and B, brackets denote the piece of the specirum that is expanded in spectra B and C, respectively.
entire spectrum of this band (Figure IB) spans $\sim 90 \mathrm{GHz}\left(3 \mathrm{~cm}^{-1}\right)$ and exhibits more than 1500 resolved lines. The lifetime-limited line width (fwhm) of single lines (Figure IC) is $18 \mathrm{MHz}(\sim 0.0006$ cm^{-1}). Notably, these lines exhibit spacings that are significantly

[^0]: (1) Bridgehead olefin reviews: (a) Warner, P. M. Chem. Rev. 1989, 89, 1067-1093. (b) Wenırup, C. Reactive Molecules; John Wiley and Sons: New York, 1984; pp 265-308. (c) Szeimies, G. In Reactive Intermediales; Abramovitch, R. A., Ed; Plenum: New York, 1983; Vol. 3, pp 299-366. (d) Shea, K. J. Tetrahedron 1980, 36, 1683-1715.
 (2) For several recent examples of X-ray crystal structures of Iransitionmelal complexes of strained olefins see: (a) Bly, R. S.; Hossain, M. M.; Lebioda, L. J. Am. Chem. Soc. 1985, 107, 5549-5550. (b) Kumar, A.; Lichienhan, J. D.; Critchlow, S. C.; Eichinger, B. E.; Borden, W. T. J. Am. Chem. Soc. 1990, //2, 5633-5634. (c) For the X-ray crystal struclure of a 1-azabicyclo[3.3.1]nonan-2-one derivative see: Buchanan, G. L.; Kilson, D. H.; Mallinson, P. R.; Sim, G. A.; White, D. N. J.; Cox, P. J. J. Chem. Soc., Perkin Trans. II 1983. 1709-1712.
 (3) (a) Shea, K. J.; Burke, L. D. Telrahedron Lell. 1987, 28, 735-738. (b) Shea. K. J.: Burke, L. D. J. Org. Chem. 1985, 50, 725-727. (c) Shea, K. J.; Wise, S.; Burke, L. D.; Davis, P. D.; Gilman, J. W.; Greley, A. C. J. Am. Chem. Soc. 1982, 104, 5708-5715. (d) Shea, K. J.; Wise, S. J. Am. Chem. Soc. 1978, 100, 6519-6521.
 (4) Weinreb, S. M. Acc. Chem. Res. 1985, 18, 16-21 and references therein.

[^1]: (1) Pauling, L.; Corey, R. B. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 729.
 (2) Bairakıari, E.; Mierke, D. F.; Mammi, S.; Peggion, E. J. Am. Chem. Soc. 1990, 112. 5383 and references therein.
 (3) See, for example: Jeong, K.-S.; Tjivikua, T.; Rebek, J., Jr. J. Am. Chem. Soc. 1990, 112, 3215.
 (4) Nimlos, M. R.; Kelley, D. F.; Bernstein, E. R. J. Phys. Chem. 1989. 93, 643.
 (5) Held, A.; Plusquellic, D. F.; Tomer, J. L.; Pralı, D. W. Work in progress.
 (6) Majewski, W. A.; Plusquellic, D. F.; Prall, D. W. J. Chem. Phys. 1989 90, 1362.

